Part Number Hot Search : 
HDSSCIB CQ208B 74HC20 425F3XCM 150U80DL PAL16R4A COM200 2222A
Product Description
Full Text Search
 

To Download XC61081 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 XC6108 Series
Voltage Detector with Separated Sense Pin & Delay Type Capacitor
ETR0205_007
*
GENERAL DESCRIPTION
The XC6108 series is highly precise, low power consumption voltage detector, manufactured using CMOS and laser trimming technologies. Since the sense pin is separated from power supply, it allows the IC to monitor added power supply. Using the IC with the sense pin separated from power supply enables output to maintain the state of detection even when voltage of the monitored power supply drops to 0V. Moreover, with the built-in delay circuit, connecting the delay capacitance pin to the capacitor enables the IC to provide an arbitrary release delay time. Both CMOS and N-channel open drain output configurations are available.
*
APPLICATIONS
*
FEATURES
: +2% (Setting Detect Voltage* 1.5V) : +30mV (Setting Detect Voltage* 1.5V)
*oe Microprocessor reset circuitry
Highly Accurate
*oe Charge voltage monitors
*oe Memory battery back-up switch circuits
Ultra Low Power Consumption : 0.8 (TYP.) (VIN= 2.0V) A Detect Voltage Range : 0.8V ~ 5.0V in 100mV increments Operating Voltage Range : 1.0V ~ 6.0V Detect Voltage Temperature Characteristics : 100ppm/ Output Configuration Operating Temperature Range : -40 Separated Sense Pin Built-In Delay Circuit, Delay Capacitance Pin Available Ultra Small Package : USP-4 SOT-25
*Z *Z (TYP.)
*oe Power failure detection circuits
: CMOS or N-channel open drain ~ +85
*Z
*
TYPICAL APPLICATION CIRCUIT
*
TYPICAL PERFORMANCE CHARACTERISTICS
XC6108C25A GR 7.0
Ta=25*Z
*oe Output Voltage vs. Sense Voltage VIN VIN Added Power Supply VSEN Cd Cd VSS VOUT No resistor needed for CMOS output product R 100k
6.0
Output Voltage : VOUT (V) Output V oltage: VO UT (V)
5.0 4.0 3.0 2.0 1.0 0.0 -1.0 0 1 2 3 4
V IN=6.0V
4.0V
1.0V
5
6
Sense V oltage: :VVSEN (V) Sense Voltage SEN (V)
1/22
XC6108 Series
*
PIN CONFIGURATION
5 Cd 4 VSEN
VOUT VSS
VIN 3
USP-4 (BOTTOM VIEW)
* In the XC6108xxxA/B series, the dissipation pad should not be short-circuited with other pins. * In the XC6108xxxC/D series, when the dissipation pad is short-circuited with other pins, connect it to the NC pin (pin No.2) before use.
1
2
SOT-25 (TOP VIEW)
*
PIN ASSIGNMENT
PIN NUMBER USP- 4 1 2 2 3 4 5 SOT-25 1 5 4 3 2 PIN NAME VOUT Cd NC VSEN VIN VSS FUNCTION Output (Detect "L") Delay Capacitance (*1) No Connection Sense Input Ground (*2)
NOTE: *1: With the VSS pin of the USP-4 package, a tab on the backside is used as the pin No.5. *2: In the case of selecting no built-in delay capacitance pin type, the delay capacitance (Cd) pin will be used as the N.C.
*
PRODUCT CLASSIFICATION
Information
XC6108 @ B D A C E DESIGNATOR @ A B DESCRIPTION Output Configuration Detect Voltage SYMBOL C N 08 ~ 50 A C Output Delay & Hysteresis (Options) B C D D E Package Device Orientation G M R L : CMOS output : N-ch open drain output : e.g. 18*1.8V : Built-in delay capacitance pin, hysteresis 5% (TYP.)(Standard*) : Built-in delay capacitance pin, hysteresis less than 1%(Standard*) : No built-in delay capacitance pin, hysteresis 5% (TYP.) (Semi-custom) : No built-in delay capacitance pin, hysteresis less than 1% (Semi-custom) : USP-4 : SOT-25 : Embossed tape, standard feed : Embossed tape, reverse feed DESCRIPTION
*oe Ordering
*When delay function isn't used, open the delay capacitance pin before use.
2/22
XC6108
Series
*
BLOCK DIAGRAMS
(1) XC6108CxxA
*The delay capacitance pin (Cd) is not connected to the circuit in the block diagram of XC6108CxxC (semi-custom).
(2) XC6108CxxB
*The delay capacitance pin (Cd) is not connected to the circuit in the block diagram of XC6108CxxD (semi-custom).
(3) XC6108NxxA
*The delay capacitance pin (Cd) is not connected to the circuit in the block diagram of XC6108NxxC (semi-custom).
(4) XC6108NxxB
*The delay capacitance pin (Cd) is not connected to the circuit in the block diagram of XC6108NxxD (semi-custom).
3/22
XC6108 Series
*
ABSOLUTE MAXIMUM RATINGS
Ta = 25OC SYMBOL VIN IOUT VOUT VSEN VCD ICD Pd Ta Tstg XC6108C (*1) XC6108N (*2) RATINGS VSS*| 0.3 ~ 7.0 10 VSS*| 0.3 ~ VIN*{ 0.3 VSS*| 0.3 ~ 7.0 VSS*| 0.3 ~ 7.0 VSS*| 0.3 ~ VIN*{ 0.3 5.0 120 250 *|40 ~*{85 *|55 ~*{125 UNITS V mA V V V mA mW *Z *Z PARAMETER Input Voltage Output Current Output Voltage
*oe XC6108xxxA/B
Sense Pin Voltage Delay Capacitance Pin Voltage Delay Capacitance Pin Current Power Dissipation USP-4 SOT-25
Operating Temperature Range Storage Temperature Range
*oe XC6108xxxC/D PARAMETER Input Voltage Output Current Output Voltage XC6108C (*1) XC6108N (*2) USP-4 SOT-25 SYMBOL VIN IOUT VOUT VSEN Pd Ta Tstg RATINGS VSS*| 0.3 ~ 7.0 10 VSS*| 0.3 ~ VIN*{ 0.3 VSS*| 0.3 ~ 7.0 VSS*| 0.3 ~ 7.0 120 250 *|40 ~*{85 *|55 ~*{125
Ta = 25 C UNITS V mA V V mW *Z *Z
O
Sense Pin Voltage Power Dissipation
Operating Temperature Range Storage Temperature Range
NOTE: *1: CMOS output *2: N-ch open drain output
4/22
XC6108
Series
*
ELECTRICAL CHARACTERISTICS
Ta=25*Z SYMBOL VIN VDF VHYS1 VDF VINVDF ISS1 ISS2 CONDITIONS VDF(T) = 0.8 ~ 5.0V (*1) VIN = 1.0 ~ 6.0V VIN = 1.0 ~ 6.0V VIN = 1.0 ~ 6.0V VSEN = VDF x 0.9 VSEN = VDF x 1.1 VSEN =0V VDS = 0.5V (N-ch) VSEN = 6.0V VDS = 0.5V (P-ch) -40
*Z
*oe XC6108xxxA
PARAMETER Operating Voltage Detect Voltage Hysteresis Range1 Detect Voltage Line Regulation Supply Current 1 (*2) Supply Current 2 (*2)
MIN. 1.0
TYP. E-1 E-2
MAX. 6.0
UNITS V V V
CIRCUITS 1 1 1 2 2 3 4 1 5 6 6 7 8 9 9
0.08 1.20 -
0.1 0.6 0.7 0.8 0.9 0.20 2.00 -0.30 -2.00 100 E-4
1.5 1.6 1.7 1.8 -0.08 -0.70 -
%/V A A mA mA ppm/
*Z
VIN = 1.0V VIN = 6.0V VIN = 1.0V VIN = 6.0V VIN = 1.0V VIN = 6.0V VIN = 1.0V VIN = 6.0V
Output Current (*3) Temperature Characteristics Sense Resistance (*4) Delay Resistance (*5) Delay capacitance pin Sink Current Delay Capacitance Pin Threshold Voltage Unspecified Operating Voltage (*6) Detect Delay Time (*7) Release Delay Time (*8)
NOTE:
IOUT
VDF TaVDF RSEN Rdelay ICD VTCD VUNS TDF0 TDR0
*... *... Ta 85*Z
VSEN = 5.0V, VIN = 0V VSEN = 6.0V, VIN = 5.0V, Cd = 0V VDS = 0.5V, VIN = 1.0V VSEN = 6.0V, VIN = 1.0V VSEN = 6.0V, VIN = 6.0V VIN = VSEN = 0V ~ 0.7V VIN = 6.0V, VSEN = 6.0V* .0V 0 Cd: Open VIN = 6.0V, VSEN = 0.0V* .0V 6 Cd: Open 1.6 0.4 2.9 -
M 2.4 0.6 3.1 0.4 230 200 M A V V s s
2.0 200 0.5 3.0 0.3 30 30
*1: VDF(T): Setting detect voltage *2: Current flows the sense resistor is not included. *3: This numerical value is applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: Calculated from the voltage value of the VIN and the current value of the Cd. *6: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited This numerical value is applied only to the XC6108C series (CMOS output). *7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin. *8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.
5/22
XC6108 Series
*
ELECTRICAL CHARACTERISTICS (Continued)
Ta=25*Z SYMBOL VIN VDF VHYS1 VDF VINVDF ISS1 ISS2 CONDITIONS VDF(T) = 0.8 ~ 5.0V (*1) VIN = 1.0 ~ 6.0V VIN = 1.0 ~ 6.0V VIN = 1.0 ~ 6.0V VSEN = VDF x 0.9 VSEN = VDF x 1.1 VSEN =0V VDS = 0.5V (N-ch) VSEN = 6.0V VDS = 0.5V (P-ch) -40
*Z
*oe XC6108xxxB PARAMETER Operating Voltage Detect Voltage Hysteresis Range1 Detect Voltage Line Regulation Supply Current 1 (*2) Supply Current 2 (*2) MIN. 1.0 TYP. E-1 E-3 0.08 1.20 0.1 0.6 0.7 0.8 0.9 0.20 2.00 -0.30 -2.00 100 E-4 1.6 0.4 2.9 2.0 200 0.5 3.0 0.3 30 30 2.4 0.6 3.1 0.4 230 200 1.5 1.6 1.7 1.8 -0.08 -0.70 MAX. 6.0 UNITS V V V %/V A A mA mA ppm/
*Z
CIRCUITS 1 1 1 2 2 3 4 1 5 6 6 7 8 9 9
VIN = 1.0V VIN = 6.0V VIN = 1.0V VIN = 6.0V VIN = 1.0V VIN = 6.0V VIN = 1.0V VIN = 6.0V
Output Current (*3)
IOUT
Temperature Characteristics Sense Resistance (*4) Delay Resistance (*5) Delay capacitance pin Sink Current Delay Capacitance Pin Threshold Voltage Unspecified Operating Voltage (*6) Detect Delay Time (*7) Release Delay Time (*8)
NOTE:
VDF TaVDF RSEN Rdelay ICD VTCD VUNS TDF0 TDR0
*... *... Ta 85*Z
VSEN = 5.0V, VIN = 0V VSEN = 6.0V, VIN = 5.0V, Cd = 0V VDS = 0.5V, VIN = 1.0V VSEN = 6.0V, VIN = 1.0V VSEN = 6.0V, VIN = 6.0V VIN = VSEN = 0V ~ 0.7V VIN = 6.0V, VSEN = 6.0V* .0V 0 Cd: Open VIN = 6.0V, VSEN = 0.0V* .0V 6 Cd: Open
M M A V V s s
*1: VDF(T): Setting detect voltage *2: Current flows the sense resistor is not included. *3: This numerical value is applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: Calculated from the voltage value of the VIN and the current value of the Cd. *6: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited This numerical value is applied only to the XC6108C series (CMOS output). *7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin. *8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.
6/22
XC6108
Series
*
ELECTRICAL CHARACTERISTICS (Continued)
Ta=25*Z SYMBOL VIN VDF VHYS1 VDF VINVDF ISS1 ISS2 CONDITIONS VDF(T) = 0.8 ~ 5.0V (*1) VIN = 1.0 ~ 6.0V VIN = 1.0 ~ 6.0V VIN = 1.0 ~ 6.0V VSEN = VDF x 0.9 VSEN = VDF x 1.1 VSEN =0V VDS = 0.5V (N-ch) VSEN = 6.0V VDS = 0.5V (P-ch) -40
*Z
*oe XC6108xxxC PARAMETER Operating Voltage Detect Voltage Hysteresis Range1 Detect Voltage Line Regulation Supply Current 1 (*2) Supply Current 2 (*2) Output Current (*3) Temperature Characteristics Sense Resistance (*4) Unspecified Operating Voltage (*5) Detect Delay Time (*6) Release Delay Time (*7)
NOTE: *1: VDF(T): Setting detect voltage *2: Current flows the sense resistor is not included. *3: This numerical value is applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited This numerical value is applied only to the XC6108C series (CMOS output). *6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls. *7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.
MIN. 1.0
TYP. E-1 E-2
MAX. 6.0
UNITS V V V
CIRCUITS 1 1 1 2 2 3 4 1 5 7 9 9
0.08 1.20 -
0.1 0.6 0.7 0.8 0.9 0.20 2.00 -0.30 -2.00 100 E-4
1.5 1.6 1.7 1.8 -0.08 -0.70 -
%/V A A mA mA ppm/
*Z
VIN = 1.0V VIN = 6.0V VIN = 1.0V VIN = 6.0V VIN = 1.0V VIN = 6.0V VIN = 1.0V VIN = 6.0V
IOUT
VDF TaVDF RSEN VUNS TDF0 TDR0
*... *... Ta 85*Z
VSEN = 5.0V, VIN = 0V VIN = VSEN = 0V ~ 0.7V VIN = 6.0V, VSEN = 6.0V* .0V 0 VIN = 6.0V, VSEN = 0.0V* .0V 6 -
M 0.4 230 200 V s s
0.3 30 30
7/22
XC6108 Series
*
ELECTRICAL CHARACTERISTICS (Continued)
Ta=25*Z SYMBOL VIN VDF VHYS1 VDF VINVDF ISS1 ISS2 CONDITIONS VDF(T) = 0.8 ~ 5.0V (*1) VIN = 1.0 ~ 6.0V VIN = 1.0 ~ 6.0V VIN = 1.0 ~ 6.0V VSEN = VDF x 0.9 VSEN = VDF x 1.1 VSEN =0V VDS = 0.5V (N-ch) VSEN = 6.0V VDS = 0.5V (P-ch) -40
*Z
*oe XC6108xxxD PARAMETER Operating Voltage Detect Voltage Hysteresis Range1 Detect Voltage Line Regulation Supply Current 1 (*2) Supply Current 2 (*2) MIN. 1.0 TYP. E-1 E-3 0.08 1.20 0.1 0.6 0.7 0.8 0.9 0.20 2.00 -0.30 -2.00 100 E-4 0.3 30 30 0.4 230 200 1.5 1.6 1.7 1.8 -0.08 -0.70 MAX. 6.0 UNITS V V V %/V A A mA mA ppm/
*Z
CIRCUITS 1 1 1 2 2 3 4 1 5 7 9 9
VIN = 1.0V VIN = 6.0V VIN = 1.0V VIN = 6.0V VIN = 1.0V VIN = 6.0V VIN = 1.0V VIN = 6.0V
Output Current (*3)
IOUT
Temperature Characteristics Sense Resistance (*4) Unspecified Operating Voltage (*5) Detect Delay Time (*6) Release Delay Time (*7)
VDF TaVDF RSEN VUNS TDF0 TDR0
*... *... Ta 85*Z
VSEN = 5.0V, VIN = 0V VIN = VSEN = 0V ~ 0.7V VIN = 6.0V, VSEN = 6.0V* .0V 0 VIN = 6.0V, VSEN = 0.0V* .0V 6
M V s s
NOTE: *1: VDF(T): Setting detect voltage *2: Current flows the sense resistor is not included. *3: This numerical value is applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited This numerical value is applied only to the XC6108C series (CMOS output). *6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls. *7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.
8/22
XC6108
Series
*
VOLTAGE CHART
SYMBOL SETTING OUTPUT VOLTAGE VDF(T) (V) 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 E-1 DETECT VOLTAGE (*1) (V) VDF MIN. 0.770 0.870 0.970 1.070 1.170 1.270 1.370 1.470 1.568 1.666 1.764 1.862 1.960 2.058 2.156 2.254 2.352 2.450 2.548 2.646 2.744 2.842 2.940 3.038 3.136 3.234 3.332 3.430 3.528 3.626 3.724 3.822 3.920 4.018 4.116 4.214 4.312 4.410 4.508 4.606 4.704 4.802 4.900 MAX. 0.830 0.930 1.030 1.130 1.230 1.330 1.430 1.530 1.632 1.734 1.836 1.938 2.040 2.142 2.244 2.346 2.448 2.550 2.652 2.754 2.856 2.958 3.060 3.162 3.264 3.366 3.468 3.570 3.672 3.774 3.876 3.978 4.080 4.182 4.284 4.386 4.488 4.590 4.692 4.794 4.896 4.998 5.100 E-2 HYSTERESIS RANGE (V) VHYS MIN. MAX. 0.015 0.066 0.017 0.074 0.019 0.082 0.021 0.090 0.023 0.098 0.025 0.106 0.027 0.114 0.029 0.122 0.031 0.131 0.033 0.085 0.035 0.147 0.037 0.155 0.039 0.163 0.041 0.171 0.043 0.180 0.045 0.188 0.047 0.196 0.049 0.204 0.051 0.212 0.053 0.220 0.055 0.228 0.057 0.237 0.059 0.245 0.061 0.253 0.063 0.261 0.065 0.269 0.067 0.277 0.069 0.286 0.071 0.294 0.073 0.302 0.074 0.310 0.076 0.318 0.078 0.326 0.080 0.335 0.082 0.343 0.084 0.351 0.086 0.359 0.088 0.367 0.090 0.375 0.092 0.384 0.094 0.392 0.096 0.400 0.098 0.408 E-3 HYSTERESIS RANGE (V) VHYS MIN. MAX. 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.020 0.021 0.022 0.023 0.024 0.026 0.027 0.028 0.029 0 0.030 0.031 0.032 0.033 0.034 0.035 0.036 0.037 0.038 0.039 0.040 0.041 0.042 0.043 0.044 0.045 0.046 0.047 0.048 0.049 0.050 0.051 E-4 SENSE RESISTANCE ( M ) RSEN MIN. TYP.
10
20
13
24
15
28
NOTE: *1: When VDF(T)*... 1.4V, the detection accuracy is *}30mV. When VDF(T)*1.5V, the detection accuracy is *}2%.
9/22
XC6108 Series
*
TEST CIRCUITS
Circuit 1
Circuit 2
Circuit 3
Circuit 4
Circuit 5
10/22
XC6108
Series
*
TEST CIRCUITS (Continued)
Circuit 6
Circuit 7
Circuit 8
Circuit 9
R=100k (No resistor needed for CMOS output products) VOUT Waveform Measurement Point Cd VSS * No delay capacitance pin available in the XC6108xxxC/D series.
VIN VSEN
11/22
XC6108 Series
*
OPERATIONAL EXPLANATION
A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2 on page 14.
@ an early state, the sense pin is applied sufficiently high voltage (6.0V MAX.) and the delay capacitance (Cd) is charged As to the power supply input voltage, (VIN: 1.0V MIN., 6.0V MAX.). While the sense pin voltage (VSEN) starts dropping to reach the detect voltage (VDF) (VSEN>VDF), the output voltage (VOUT) keeps the "High" level (=VIN). * If a pull-up resistor of the XC6108N series (N-ch open drain) is connected to added power supply different from the input voltage pin, the "High" level will be a voltage value where the pull-up resistor is connected. AWhen the sense pin voltage keeps dropping and becomes equal to the detect voltage (VSEN =VDF), an N-ch transistor (M3) for the delay capacitance (Cd) discharge is turned ON, and starts to discharge the delay capacitance (Cd). An inverter (Inv.1) operates as a comparator of the reference voltage VIN, and the output voltage changes into the "Low" level (=VSS). The detect delay time [TDF] is defined as time which ranges from VSEN=VDF to the VOUT of "Low" level (especially, when the Cd pin is not connected: TDF0). BWhile the sense pin voltage keeps below the detect voltage, the delay capacitance (Cd) is discharged to the ground voltage (=VSS) level. Then, the output voltage maintains the "Low" level while the sense pin voltage increases again to reach the release voltage (VSEN< VDF +VHYS). CWhen the sense pin voltage continues to increase up to the release voltage level (VDF+VHYS), the N-ch transistor (M3) for the delay capacitance (Cd) discharge will be turned OFF, and the delay capacitance (Cd) will start discharging via a delay resistor (Rdelay). The inverter (Inv.1) will operate as a comparator (Rise Logic Threshold: VTLH=VTCD, Fall Logic Threshold: VTHL=VSS) while the sense pin voltage keeps higher than the detect voltage (VSEN > VDF). DWhile the delay capacitance pin voltage (VCD) rises to reach the delay capacitance pin threshold voltage (VTCD) with the sense pin voltage equal to the release voltage or higher, the sense pin will be charged by the time constant of the RC series circuit. Assuming the time to the release delay time (TDR), it can be given by the formula (1). TDR = *|Rdelay*~ Cd*~ (1*|VTCD / VIN) *c In (1) * In = a natural logarithm The release delay time can also be briefly calculated with the formula (2) because the delay resistance is 2.0M(TYP.) and the delay capacitance pin voltage is VIN /2 (TYP.) TDR = 2.0e6*~ Cd*~ 0.69*c (2) As an example, presuming that the delay capacitance is 0.68E TDR is : F, 2.0e6*~ 0.68e*|6*~ 0.69 = 938 (ms) * Note that the release delay time may remarkably be short when the delay capacitance (Cd) is not discharged to the ground (=VSS) level because time described in B is short. EWhen the delay capacitance pin voltage reaches to the delay capacitance pin threshold voltage (VCD=VTCD), the inverter (Inv.1) will be inverted. As a result, the output voltage changes into the "High" (=VIN) level. TDR0 is defined as time which ranges from VSEN=VDF+VHYS to the VOUT of "High" level without connecting to the Cd. F While the sense voltage is higher than the detect voltage (VSEN > VDF), the delay capacitance pin is charged until the delay capacitance pin voltage becomes the input voltage level. Therefore, the output voltage maintains the "High"(=VIN) level.
12/22
XC6108
Series
*
OPERATIONAL EXPLANATION (Continued)
Chart
Cd TRANSITION OF VOUT CONDITION* @ A VSEN
*oe Function
L
H
L H L H L H L H
L *E H L H *E *E *E L H L
*VOUT transits from condition @to A because of the combination of VSEN and Cd. *oe Example ex. 1) VOUT ranges from `L' to `H' in case of VSEN = `H' ( VDR*VSEN), Cd='H' (VTCD*Cd) while VOUT is `L'. ex. 2) VOUT maintains `H' when Cd ranges from `H' to `L', VSEN='H' and Cd='L' when VOUT becomes `H' in ex.1.
*oe Release
Delay Time Chart
RELEASE DELAY TIME [TDR] (TYP.) (ms) 13.8 30.4 64.9 138 304 649 1380 RELEASE DELAY TIME [TDR] (MIN. ~ MAX.) (ms) 11.0 ~ 16.6 24.3 ~ 36.4 51.9 ~ 77.8 110 ~ 166 243~ 364 519 ~ 778 1100 ~ 1660
DELAY CAPACITANCE [Cd] (E F) 0.010 0.022 0.047 0.100 0.220 0.470 1.000
13/22
XC6108 Series
*
OPERATIONAL EXPLANATION (Continued)
Figure 1: Typical application circuit example
*The XC6108N series (N-ch open drain output) requires a pull-up resistor for pulling up output.
Figure 2: The timing chart of Figure 1
14/22
XC6108
Series
*
NOTES ON USE
Operation beyond these limits may cause degrading or permanent damage to the device.
1. Use this IC within the stated maximum ratings.
2. The power supply input pin voltage drops by the resistance between power supply and the VIN pin, and by through current at operation of the IC. similarly occur. At this time, the operation may be wrong if the power supply input pin voltage falls below In CMOS output, for output current, drops in the power supply input pin voltage the minimum operating voltage range.
Moreover, in CMOS output, when the VIN pin and the sense pin are short-circuited and used, Note it especially when you use the IC with the VIN pin connected to a resistor.
oscillation of the circuit may occur if the drops in voltage, which caused by through current at operation of the IC, exceed the hysteresis voltage. over 1.0V to the VIN pin. 4. Note that a rapid and high fluctuation of the power supply input pin voltage may cause a wrong operation. 5. When there is a possibility of which the power supply input pin voltage falls rapidly (e.g.: 6.0V to 0V) at release operation with the delay capacitance pin (Cd) connected to a capacitor, use a schottky barrier diode connected between the VIN pin and the Cd pin as the Figure 3 shown below. 6. In N-ch open drain output, a pull-up resistor connected to the output voltage pin should be 100k-200k. 3. When the setting voltage is less than 1.0V, be sure to separate the VIN pin and the sense pin, and to apply the voltage
Figure 3: Circuit example with the delay capacitance pin (Cd) connected to a schottky barrier diode
15/22
XC6108 Series
*
TYPICAL PERFORMANCE CHARACTERISTICS
(1) Supply Current vs. Sense Voltage
XC6108C25A GR 2.0
VIN=3.0V
Su p p l y C u r r e n t : I SS ( A ) Su) p p l y C u r r e n t : I SS ( A
1.5
Ta=85*Z 25*Z
1.0
0.5
-40*Z
0.0 0 1 2 3 4 5 Sense Voltage : V SEN (V ) V oltage: VSEN (V) 6
Su pA p) l y C u r r e n t : I SS SS ) ( A Su p p l y C u r r e n t : I (
(2) Supply Current vs. Input Voltage
XC6108C25AGR
VSEN =2.25V
Su p p l y C u r r e n t : I SS ( A ) Su p p l y C u r r e n t : I SS ( A )
XC6108C25AGR 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40*Z
VSEN =2.75V
1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 1 2 3 4 5 Input Voltage: VIN (V) Input Voltage : VIN (V) 6 -40*Z Ta=85*Z 25*Z
Ta=85*Z
25*Z
0
1
2
3
4
5
6
Input Voltage : VIN (V) Voltage: VIN (V)
(3) Detect Voltage vs. Ambient Temperature
XC6108C25AGR
VIN=4.0V
(4) Detect Voltage vs. Input Voltage
XC6108C25AGR 2.55 Ta=25*Z
Detect Voltage : VDF (V) Detect Voltage: VDF (V)
2.55
Detect Voltage : VDF (V) Detect Voltage: VDF (V)
85*Z 2.50
2.50
-40*Z 2.45
2.45 -50 -25 0 25 50 75 A mbient Temperature: :Ta ((*Z ) Ambient Temperature Ta *Z) 100
1.0
2.0 3.0 4.0 5.0 Input Voltage:: VIN (V) VIN (V) Input Voltage
6.0
16/22
XC6108
Series
*
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(5) Hysteresis Voltage vs. Ambient Temperature
XC6108C25AGR
VIN=4.0V
(6) CD Pin Sink Current vs. Input Voltage
XC6108C25AGR
VSEN =0V, VD S=0.5V
0.20
Cd PIN Sink Current : ICD (mA) Cd PIN Sink Current: ICD (mA)
3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 1 2 3 4 5 Input Voltage:: VIN (V) Input Voltage VIN (V) 6 85*Z
Hysteresis Voltage : Hy st eresis V oltage: VHYS (V) VHYS (V)
Ta=-40*Z 25*Z
0.15
0.10
0.05 -50 -25 0 25 50 75 Ambient Temperature : Ta (*Z) ) A mbient Temperature: Ta ( *Z 100
(7) Output Voltage vs. Sense Voltage
XC6108C25A GR 7.0 6.0
Output Voltage : VOUT (V) Output V oltage: VO UT (V)
Ta=25*Z
(8) Output Voltage vs. Input Voltage
XC6108N25AGR 4.0
Output Voltage : VOUT (V) O utput Volt age: VOUT (V)
VSEN =VIN , Pull-up=VIN , R =100k
5.0 4.0 3.0 2.0 1.0 0.0 -1.0 0 1 2 3 4
V IN=6.0V
3.0 Ta=85*Z 2.0 1.0 0.0 -1.0 0 0.5 1 1.5 2 2.5 Input Voltage:: VIN (V) Input Voltage VIN (V) 3 25*Z -40*Z
4.0V
1.0V
5
6
Sense V oltage: :V SEN (V) Sense Voltage VSEN (V)
(9) Output Current vs. Input Voltage
XC6108C25AGR
VDS(N ch)=0.5V
XC6108C25AGR
VDS(Pch)=0.5V
4.0
Output Current : IOUT (mA) Output Current: IOUT (mA)
0.0 Ta=-40*Z 25*Z Output Current: IOUT (mA) Output Current : IOUT (mA)
3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 1 2 3 4 5 Input Voltage: VIN (V) Input Voltage : VIN (V) 6 85*Z
-0.5
Ta=85*Z
-1.0
25*Z
-1.5
-40*Z
-2.0 0 1 2 3 4 5 Input Voltage: VIN (V) Input Voltage : VIN (V) 6
17/22
XC6108 Series
*
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(10) Delay Resistance vs. Ambient Temperature
XC6108C25AGR 4 Delay Resistanc : Rdelay (M ) Delay Resistance e:Rdelay (M ) 3.5 3 2.5 2 1.5 1 -50 -25 0 25 50 75 100 Ambient Temperature : Ta ( *Z Temperature: Ta (*Z )
D DT e e( t es cs ) t e l a y m : D F Detect Delay i Time:T ( m) TDF
VSEN=6.0V, VCD=0.0V, VIN=5.0V
(11) Release Delay Time vs. Delay Capacitance
XC6108C25A GR 10000
Release Delay Time : TDR (ms) Release Delay Time: T DR (ms)
Ta=25*Z
1000 100 10 1 0.1 0.0001
VIN=1.0V 3.0V 6.0V
T =.0 D2. R 0 69 C dx6x e 0.001 0.01 0.1 1 Delay Capacitance: d ( Cd ( mF) Delay Capacitance : C F )
(12) Detect Delay Time vs. Delay Capacitance
XC6108C25AGR 1000 V IN=6.0V 4.0V 100 3.0V
Ta=25*Z
10 1.0V 1 0.0001
2.0V
0.001 0.01 0.1 1 Delay Capacitance: Cd ( mF) Delay Capacitance : C d( F )
18/22
XC6108
Series
*
PACKAGING INFORMATION
1. 2*}0. 08
*oe USP-4
1. 6*} . 08 0
MA X0 . 6
0. 3*}0. 05
0 7*} . 1 .0
0.2 *} . 1 0
* Soldering fillet s urface is not form ed becaus e the s ides of the pins are plated.
1. 0*}0. 1 ( 0. 6)
*oe SOT-25
0.00 7
+ 0 .0 0 5 -0 .0 0 4
19/22
XC6108 Series
*
PACKAGING INFORMATION (Continued)
Recommended Pattern Layout *oe USP-S Recommended Metal Mask Design
*oe USP-4
*
MARKING RULE
@ Represents output configuration and integer number of detect voltage
*oe SOT-25
5
4
CMOS Output (XC6108C Series) MARK A B C D E F VOLTAGE (V) 0.x 1.x 2.x 3.x 4.x 5.x
N-ch Open Drain Output (XC6108N Series) MARK K L M N P R VOLTAGE (V) 0.x 1.x 2.x 3.x 4.x 5.x
@ABC 1 2
SOT-25 (TOP VIEW)
3
A Represents decimal number of detect voltage (ex.) MARK 3 0 VOLTAGE (V) x.3 x.0 PRODUCT SERIES XC6108xx3xxx XC6108xx0xxx
B Represents options MARK A B C D OPTIONS Built-in delay capacitance pin with hysteresis 5% (TYP.) (Standard) Built-in delay capacitance pin with hysteresis less than 1% (Standard) No built-in delay capacitance pin with hysteresis 5% (TYP.) (Semi-custom) No built-in delay capacitance pin with hysteresis less than 1% (Semi-custom) PRODUCT SERIES XC6108xxxAxx XC6108xxxBxx XC6108xxxCxx XC6108xxxDxx
C Represents production lot number 0 to 9, A to Z or inverted characters of 0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted.)
20/22
XC6108
Series
*
MARKING RULE (Continued)
@ Represents output configuration and integer number of detect voltage CMOS Output (XC6108C Series) MARK A B C D E F VOLTAGE (V) 0.x 1.x 2.x 3.x 4.x 5.x N-ch Open Drain Output (XC6108N Series) MARK K L M N P R VOLTAGE (V) 0.x 1.x 2.x 3.x 4.x 5.x
*oe USP-4
1 2
4 3
USP-4 (TOP VIEW)
@ A B C
A Represents decimal number of detect voltage (ex.) MARK 3 0 B Represents options MARK A B C D OPTIONS Built-in delay capacitance pin with hysteresis 5% (TYP.) (Standard) Built-in delay capacitance pin with hysteresis less than 1% (Standard) No built-in delay capacitance pin with hysteresis 5% (TYP.) (Semi-custom) No built-in delay capacitance pin with hysteresis less than 1% (Semi-custom) PRODUCT SERIES XC6108xxxAxx XC6108xxxBxx XC6108xxxCxx XC6108xxxDxx VOLTAGE (V) x.3 x.0 PRODUCT SERIES XC6108xx3xxx XC6108xx0xxx
C Represents production lot number 0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted.) *No character inversion used.
21/22
XC6108 Series
1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this catalog is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this catalog. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this catalog. 4. The products in this catalog are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this catalog within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this catalog may be copied or reproduced without the prior permission of Torex Semiconductor Ltd.
22/22


▲Up To Search▲   

 
Price & Availability of XC61081

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X